Class/Course - Class XII

Subject - Math

Total Number of Question/s - 3349


Just Exam provide question bank for Class XII standard. Currently number of question's are 3349. We provide this data in all format (word, excel, pdf, sql, latex form with images) to institutes for conducting online test/ examinations. Here we are providing some demo contents. Interested person may contact us at info@justexam.in


  • 1. Relations and Functions - Quiz

  • 2. Inverse Trigonometric Functions - Quiz

    1. If $sin^{-1}\left (\frac{2a}{1 + a^{2}} \right ) + sin^{-1}\left (\frac{2b}{1 + b^{2}} \right )$ = $2tan^{-1}x$ , then x =
    a) $\frac{a - b}{1 + ab}$
    b) $\frac{b}{1 + ab}$
    c) $\frac{b}{1 - ab}$
    d) $\frac{a + b}{1 - ab}$

    2. $\sum_{m=1}^{n}tan^{-1}\left (\frac{2m}{m^{4} + m^{2} + 2} \right )$ is equal to
    a) $tan^{-1}\left (\frac{n^{2} + n }{n^{2} + n + 2}\right )$
    b) $tan^{-1}\left (\frac{n^{2} - n }{n^{2} - n + 2}\right )$
    c) $tan^{-1}\left (\frac{n^{2} + n + 2}{n^{2} + n }\right )$
    d) None of these

  • 3. Matrices - Quiz

  • 4. Determinants and Matrices - Quiz

    1. If x is a positive integer, then Δ = $\begin{vmatrix} x! & \left (x+1 \right )! &\left (x+2 \right )! \\ \left (x+1 \right )! & \left (x+2 \right )! & \left (x + 3 \right )!\\ \left (x + 2 \right )! & \left (x + 3 \right )! & \left (x + 4 \right )! \end{vmatrix}$ is equal to
    a) 2(x!)(x + 1)!
    b) 2(x!)(x + 1)!(x + 2)!
    c) 2(x!)(x + 3)!
    d) None of these

    2. If P = $\begin{bmatrix} i & 0 &-i \\ 0& -i& i\\ -i& i& 0 \end{bmatrix}$ and Q = $\begin{pmatrix} -i &i \\ 0& 0\\ i &-i \end{pmatrix}$, then PQ is equal to
    a) $\begin{pmatrix} -2 &2 \\ 1& -1\\ 1&-1 \end{pmatrix}$
    b) $\begin{pmatrix} 2 &-2 \\ -1& 1\\ -1&1 \end{pmatrix}$
    c) $\begin{pmatrix} 2 &-2 \\ -1 &1 \end{pmatrix}$
    d) $\begin{pmatrix} 1 &0 &0 \\ 0 &1 &0 \\ 0& 0 & 1 \end{pmatrix}$

  • 5. Continuity and Differentiability - Quiz

    1. $lim_{x \rightarrow \infty}\left (1 - \frac{4}{x - 1} \right )^{3x - 1}$ =
    a) e12
    b) e-12
    c) e4
    d) e3

    2. If f(x) = $\begin{vmatrix} sinx & cosx &tanx \\ x^{3} &x^{2} & x\\ 2x & 1 & 1 \end{vmatrix}$, then $lim_{x \rightarrow 0} \frac{f\left (x \right )}{x^{2}}$ is
    a) 3
    b) -1
    c) 0
    d) 1

  • 6. Differentiation and Application of Derivatives - Quiz

    1. The minimum value of f(x) = |3 - x| + 7 is
    a) 0
    b) 6
    c) 7
    d) 8
    e) 10

    2. If a ball is thrown vertically upward and the height s reached in time t is given by s = 22t - 11t2, then the total distance travelled by the ball is
    a) 22 units
    b) 44 units
    c) 33 units
    d) 11 units

  • 7. Integrals - Quiz

  • 8. Application of Integrals - Quiz

    1. $\int_{-\pi}^{\pi} \left (cospx - sinqx \right )^{2}dx$ is equal to (where p and q are integers)
    a) -π
    b) 0
    c) &pi
    d) 2π

    2. The area of the region between the curves y = $\sqrt{\frac{1 + sinx}{cosx}}$ and y = $\sqrt{\frac{1 - sinx}{cosx}}$ bounded by the lines x = 0 and x = $\frac{\pi}{4}$ is
    a) $\int_{0}^{\sqrt{2}-1}\frac{t}{\left (1 + t^{2} \right )\sqrt{1 - t^{2}}}dt$
    b) $\int_{0}^{\sqrt{2}-1}\frac{4t}{\left (1 + t^{2} \right )\sqrt{1 - t^{2}}}dt$
    c) $\int_{0}^{\sqrt{2}+1}\frac{4t}{\left (1 + t^{2} \right )\sqrt{1 - t^{2}}}dt$
    d) $\int_{0}^{\sqrt{2}+1}\frac{t}{\left (1 + t^{2} \right )\sqrt{1 - t^{2}}}dt$

  • 9. Differential Equations - Quiz

    1. The degree of the differential equation y(x) = $1 + \frac{dy}{dx} + \frac{1}{1.2}\left (\frac{dy}{dx} \right )^{2} + \frac{1}{1.2.3}\left (\frac{dy}{dx} \right )^{3} + ...$ is
    a) 2
    b) 3
    c) 1
    d) None of these

    2. The differential equation of all conics whose centre lie at the origin is of order
    a) 2
    b) 3
    c) 4
    d) None of these

  • 10. Vector Algebra - Quiz

    1. The vectors $\overrightarrow{AB}$ = 3i + 5j + 4k and $\overrightarrow{AC}$ = 5i - 5j + 2k are the sides of a triangle ABC. The length of the median through A is
    a) $\sqrt{13}$ unit
    b) 2$\sqrt{5}$ unit
    c) 5 unit
    d) 10 unit

    2. If a, ,b and c are unit vectors such that a + b - c = 0, then the angle between a and b is
    a) π/6
    b) π/3
    c) π/2
    d) 2π/3

  • 11. Three Dimensional Geometry - Quiz

    1. Let L be the line of intersection of the planes 2x + 3y + z = 1 and x + 3y + 2z = 2 . If L makes an angle α with the positive x-axis , then cosα equals
    a) $\frac{1}{\sqrt{3}}$
    b) $\frac{1}{2}$
    c) 1
    d) $\frac{1}{\sqrt{2}}$

    2. The co-ordinates of the foot of perpendicular drawn from point P(1,0,3) to the join of points A(4,7,1) and B(3,5,3) is
    a) (5,7,1)
    b) $\left (\frac{5}{7}, \frac{7}{3}, \frac{17}{3} \right )$
    c) $\left (\frac{2}{7}, \frac{5}{3}, \frac{7}{3} \right )$
    d) $\left (\frac{5}{7}, \frac{2}{3}, \frac{7}{3} \right )$

  • 12. Linear Programming - Quiz

    1. The L.P. problem MaxZ = x1 + x2 such that -2x1 + x2 ≤ 1 , x1 ≤ 2, x1 + x2 ≤ 3 and x1, x2 ≥ 0 has
    a) One solution
    b) Three solution
    c) An infinite no. of solution
    d) None of these

    2. The minimum value of z = 2x1 + 3x2 subject to the constraints 2x1 + 7x2 ≥ 22, x1 + x2 ≥ 6, 5x1 + x2 ≥ 100
    a) 14
    b) 20
    c) 10
    d) 16

  • 13. Probability - Quiz

    1. A signal which can be green or red with probability $\frac{4}{5}$ and $\frac{1}{5}$ respectively, is received by station A and then transmitted to station B. The probability of each station receiving the signal correctly is $\frac{3}{4}$. If the signal received at station B is green, then the probability that the original signal was green is
    a) $\frac{3}{5}$
    b) $\frac{6}{7}$
    c) $\frac{20}{23}$
    d) $\frac{9}{20}$

    2. A coin is tossed 3 times. The probability of obtaining at least two heads is
                       or
    Three coins are tossed all together. The probablity of getting at least two heads is
    a) $\frac{1}{8}$
    b) $\frac{3}{8}$
    c) $\frac{1}{2}$
    d) $\frac{2}{3}$

  • 14. Statistics and Dynamics - Quiz

  • 15. Indefinite Integration - Quiz

    1. If $\int \frac{1}{x + x^{5}}dx$ = f(x) + c, then the value of $\int \frac{x^{4}}{x + x^{5}}dx$ is
    a) logx - f(x) + c
    b) f(x) + logx + c
    c) f(x) - logx + c
    d) None of these

    2. $\int \frac{x^{3} - x - 2}{\left (1 - x^{2} \right )}dx$ =
    a) $log\left (\frac{x + 1}{x - 1} \right ) - \frac{x^{2}}{2} + c$
    b) $log\left (\frac{x - 1}{x + 1} \right ) + \frac{x^{2}}{2} + c$
    c) $log\left (\frac{x + 1}{x - 1} \right ) + \frac{x^{2}}{2} + c$
    d) $log\left (\frac{x - 1}{x + 1} \right ) - \frac{x^{2}}{2} + c$

  • 16. Definite Integration and Area under the curve - Quiz

    1. If Im = $\int_{1}^{x}\left (logx \right )^{m}dx$ datisfies the relation Im = k - lIm-1, then
    a) k = e
    b) l = m
    c) k = $\frac{1}{e}$
    d) None of these

    2. The area (in sq. unit) of the region bounded by the curves 2x = y2 - 1 and x = 0 is
    a) $\frac{1}{3}$
    b) $\frac{2}{3}$
    c) 1
    d) 2